{1,6}-Transannular Catalytic Asymmetric Gosteli—Claisen Rearrangement

Tobias Jaschinski and Martin Hiersemann*

Fakultät Chemie, Technische Universität Dortmund, 44227 Dortmund, Germany martin.hiersemann@udo.edu

Received June 27, 2012

The first uncatalyzed and $[Cu(R-box)L_2](SbF_6)_2$ -catalyzed {1,6}-transannular Gosteli-Claisen rearrangement of cyclic 2-alkoxycarbonyl-substituted allyl vinyl ethers to afford medium- and large-sized carbacycles is disclosed.

Major progress has been made during the past decade in the development of catalytic asymmetric Claisen rearrangements.¹ Carrying the established procedures to application in target-oriented synthesis provides an efficient means to identify new challenges. (+)-Xeniolide F (I) is a member of the xenicane family of diterpenes of marine origin (Figure 1).² In connection with an ongoing research enterprise toward the synthesis of (+)-xeniolide F,^{3,4} a retrosynthesis was proposed that hinges on the success of a {1,6}-transannular catalytic asymmetric Gosteli–Claisen rearrangement ({1,6}-TCAGC).⁵ The prospect of a single step construction of the critical stereogenic carbon atoms C2 and C10 (xenicane numbering) as well as the strained nine-membered carbacycle with predictable catalyst-induced diastereoselectivity lured us to consider the development of this unprecedented variation of the catalytic asymmetric Gosteli–Claisen rearrangement.⁶

ORGANIC LETTERS

2012 Vol. 14, No. 16

4114-4117

Considering the relatively thin experimental basis,⁶ we decided to embark on a model study to explore the

^{(1) (}a) Cao, T.; Deitch, J.; Linton, E. C.; Kozlowski, M. C. Angew. Chem., Int. Ed. 2012, 51, 2448-2451. (b) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 5062-5075. (c) Troendlin, J.; Rehbein, J.; Hiersemann, M.; Trapp, O. J. Am. Chem. Soc. 2011, 133, 16444-16450. (d) Uyeda, C.; Rötheli, A. R.; Jacober, E. N. Angew. Chem. **2010**, *122*, 9947–9950. (e) Marie, J.-C.; Xiong, Y.; Min, G. K.; Yeager, A. R.; Taniguchi, T.; Berova, N.; Schaus, S. E.; Porco, J. A. *J. Org. Chem.* **2010**, 75, 4584-4590. (f) Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162-16163. (g) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 9228-9229. (h) Wender, P. A.; D'Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto, E. E.; Kowalski, J. A.; McKendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender, D. Org. Lett. 2007, 9, 1829–1832. (i) Akiyama, K.; Mikami, K. Tetrahedron Lett. 2004, 45, 7217-7220. (j) Abraham, L.; Körner, M.; Hiersemann, M. Tetrahedron Lett. 2004, 45, 3647-3650. (k) Abraham, L.; Körner, M.; Schwab, P.; Hiersemann, M. Adv. Synth. Catal. 2004, 346, 1281-1294. (1) Helmboldt, H.; Hiersemann, M. Tetrahedron 2003, 59, 4031-4038. (m) Abraham, L.; Czerwonka, R.; Hiersemann, M. Angew. Chem., Int. Ed. 2001, 40, 4700-4703. (2) Anta, C.; Gonzalez, N.; Santafe, G.; Rodriguez, J.; Jimenez, C.

J. Nat. Prod. 2002, 65, 766–768.

⁽³⁾ Pollex, A.; Hiersemann, M. Org. Lett. 2005, 7, 5705-5708.

⁽⁴⁾ For total synthesis of xenicane diterpenoids, see: (a) Renneberg,
D.; Pfander, H.; Leumann, C. J. J. Org. Chem. 2000, 65, 9069–9079. (b)
Mushti, C. S.; Kim, J.-H.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 14050–14052. (c) Larionov, O. V.; Corey, E. J. J. Am. Chem. Soc. 2008, 130, 2954–2955. (d) Hamel, C.; Prusov, E. V.; Gertsch, J.; Schweizer,
W. B.; Altmann, K.-H. Angew. Chem. 2008, 120, 10235–10239. (e)
Williams, D. R.; Walsh, M. J.; Miller, N. A. J. Am. Chem. Soc. 2009, 131, 9038–9045.

⁽⁵⁾ For previous application of the CAGC in target-oriented synthesis, see: (a) Gille, A.; Hiersemann, M. Org. Lett. 2010, 12, 5258–5261.
(b) Körner, M.; Hiersemann, M. Org. Lett. 2007, 9, 4979–4982. (c) Stiasni, N.; Hiersemann, M. Synlett 2009, 2133–2136.

⁽⁶⁾ Knight has reported an uncatalyzed {1,6}-transannular Ireland– Claisen rearrangement of a 13- and 15-membered lactone containing an *E*-configured allyl ether double bond. In the event, the rearrangement products were isolated as mixtures of diastereomers (*trans/cis* = 56:44 and 68:32), presumably due to the intermediacy of double bond isomeric silyl ketene acetals. The rearrangement of the corresponding 15-membered lactone featuring a *Z*-configured allyl ether double bond delivered the 11-membered rearrangement product as a mixture of diastereomers (*trans/cis* = 34:66); see: (a) Cameron, A. G.; Knight, D. W. *Tetrahedron Lett.* **1982**, *23*, 5455–5458. (b) Cameron, A. G.; Knight, D. W. *J. Chem. Soc., Perkin Trans. 1* **1986**, 161–167.

Figure 1. Retrosynthesis of xeniolide F and design of a proof of concept study for a {1,6}-TCAGC.

synthetic access to cyclic 2-alkoxycarbonyl-substituted allyl vinyl ethers (1) as well as the stereoselectivity of the uncatalyzed and catalyzed $\{1,6\}$ -transannular Gosteli– Claisen rearrangement ($\{1,6\}$ -TGC). For that purpose, we synthesized the four double bond isomers of the 13-membered 1b and, in order to gain insights into the influence of the ring size on reactivity and stereoselectivity, the 12-membered 1a, the 14-membered 1c, and the 18-membered 1d (Scheme 1).

The synthesis of 1a-d commenced from the allylic alcohols $2a-d^7$ and proceeded via a sequence consisting of Rh(I)-catalyzed OH insertion,⁸ deprotection,⁹ and oxidation^{10,11} to afford the aldehydes 4a-d (Scheme 1). Subsequent intramolecular Horner–Wadsworth–Emmons reaction furnished 1a-d as mixtures of double bond isomers which were separated by preparative HPLC.^{12,13}

(7) For the synthesis of 2a-d, see the Supporting Information.

(Table 1). Previous experimental¹⁴ and computational¹⁵ studies on the uncatalyzed Gosteli-Claisen rearrangement of acyclic allyl vinyl ethers established high yields and nearly perfect diastereoselectivities due to a pronounced preference for a chairlike transition state (TS) structure irrespective of the allvl vinvl ether double bond configuration. The 18-membered (E,Z)- and (Z,Z)-1d, selected to mimic the transition to the acvelic case, upon heating, underwent the {1,6}-TGC in excellent yield and diastereoselectivity (entries 1 and 2). In the event, and in accordance with a pronounced preference for a chairlike TS structure, (E,Z)-1d provided (\pm) -cis-5d (99%, dr = 95:5) whereas (Z,Z)-1d preferentially afforded (\pm) -trans-5d (99%, dr = 93.7). The {1,6}-TGC of the 12-, 13-, or 14membered (E,E)-1a-c provided the cycloalkanes (\pm) -trans-5a-c in very good yields and diastereoselectivities (entries 3, 4, and 5);¹⁶ notably, a significantly increased reaction time at 140 °C was required to ensure complete conversion of (E,E)-**1b,c.** Subjecting (Z,E)- or (E,Z)-**1b** to identical conditions provided (\pm) -cis-5b in a slightly diminished yield but still with useful diastereoselectivities (entries 6 and 7). Notably, only miniscule amounts of (\pm) -cis-5b were isolated after prolonged heating of (Z,Z)-1b at 140 °C, attesting to the reluctance of (Z,Z)-1b to undergo the {1,6}-TGC (entry 8). More forcing conditions (μ w, 210 °C) led to a faster formation of (\pm) -cis-**5b** via a boat-like TS structure and with concurrent decomposition of the starting material (entry 9).

With the requisite cyclic allyl vinyl ethers 1a-d in hand, the unprecedented $\{1,6\}$ -TGC was investigated first

Table 1. Uncatalyzed $\{1,6\}$ -Transannular Gosteli-ClaisenRearrangement^a

C 0 n = = n = n = n = n = n = n = n = n = n	O ₂ Me (CH ₂) _n 1 (12): 1a 2 (13): 1b 3 (14): 1c 7 (18): 1d	(CH ₂ Cl) ₂ 140 °C naled tube n = 1 (n = 3 (1 n = 7 (1	CO2Me (CH2)n 8): (±)-trans-5i 9): (±)-trans-5i (4): (±)-trans-5	CO_2Me + (() a n = 1: (±)-c b n = 2: (±)-c id n = 7: (±)-c	CH ₂) _r tis-5a tis-5b tis-5c tis-5d
entry	ring size	substrate	time (h)	yield $(\%)^b$	$\mathrm{d}\mathbf{r}^c$
1	18→14	(<i>E</i> , <i>Z</i>)-1d	24	99	5:95
2	18→14	(Z,Z)-1d	24	99	93:7
3	12→8	(E,E)-1a	24	98	88:12
4	13→9	(<i>E</i> , <i>E</i>)-1b	94	92	94:6
5	14→10	(E,E)-1c	94	99	87:13
6	13→9	(Z, E)-1b	94	74	11:89
7	13→9	(<i>E</i> , <i>Z</i>)-1b	94	76^d	8:92
8	13→9	(Z,Z)-1b	94	6^e	<5:95
9	13→9	(Z,Z)-1b	31^f	37^g	5:95

^{*a*} Experiments conducted with 0.08 mmol of **1a**–**c** and 0.06 mmol of **1d**. ^{*b*} Isolated yield after purification by chromatography. ^{*c*} trans-**5**/*cis*-**5**, ratio determined by NMR; relative configuration assigned by NOE experiments. See Supporting Information for details. ^{*d*} With 8% of (*E*,*Z*)-**1b** recovered. Complete consumption of (*E*,*Z*)-**1b** fatter 168 h: 74%, dr = 8:92. ^{*c*} With 92% of (*Z*,*Z*)-**1b** recovered. ^{*f*} 210 °C by microwave irradiation. ^{*s*} With 50% of (*Z*,*Z*)-**1b** recovered and contaminated with [1,3]-rearrangement product.

(8) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811-10843.

We next turned our attention to the envisioned $\{1,6\}$ -TCAGC using the 13-membered (E,E)-1b for the purpose of catalyst optimization (Table 2). (R,R)-6a and (S,S)-6d, members of the copper(II)bis(oxazoline) family of chelating C_2 -symmetric Lewis acids,¹⁷ are known catalysts for the catalytic asymmetric Gosteli-Claisen rearrangement (CAGC) at ambient temperature. Additionally, the stereodifferentiating substituents (R) and the ligands (L) were varied to modulate selectivity and reactivity; selected examples are summarized in Table 2. (R,R)-6a (R = Ph, L = H_2O) proved to be an effective catalyst for a rt {1,6}-TCAGC providing trans-5b in high yields and diastereoselectivies (dr = 92:8) but offered only low enantioselectivities (13% ee) (entry 1). (R,R)-6b (R = Ph, L = PhOH) demonstrated faster conversion but otherwise did not bias the stereoselectivity (entry 2). An increase in enantioselectivity (70% ee) was obtained with (R,R)-6c (R = Bn, L = PhOH) but at the expense of a slightly lower diastereoselectivity (dr = 87:13) (entry 3).¹⁸ For the known (S,S)-6d $(R = t-Bu, L = H_2O)$, the enantioselectivity eventually reached synthetically useful levels (>98% ee) (entry 4). Subsequent experiments using the previously unreported (S,S)-6e (R = t-Bu, L = CF₃CH₂OH) or (S,S)-6f (R = t-Bu, L = PhOH) resulted in comparable enantioselectivities but increased turnover (entries 5 and 6). It was then found possible to reduce the catalyst loading to 5 mol % for (S,S)-6f by prolonging the reaction time (entry 7). The increase in enantioselectivity (> 98% ee) observed with the catalysts (S,S)-6d,e,f (R = t-Bu) was accompanied by a significantly diminshed diastereoselectivity (dr = 83:17). A subtle dependence of diastereoselectivity on the ring size was observed when 12-membered (E,E)-1a and 14-membered (E,E)-1c were subjected to the standard protocol using (S,S)-6f as the catalyst. In detail, using either 15 or 2.5 mol % of (S,S)-6f, the $\{1,6\}$ -TCAGC of (E,E)-1a provided the 8-membered 5a with low diastereoselectivity, but excellent enantioselectivity (dr = 62:38, >97% ee) (entry 8); (E,E)-1c

(9) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, *23*, 885–888.

(10) Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505–5507.

(11) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

(12) (a) Paquet, F.; Sinay, P. J. Am. Chem. Soc. 1984, 106, 8313–8315.
(b) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183–2186.

(13) Assignment of the double bond configuration by NOE experiments; see Supporting Information for details.

(14) Rehbein, J.; Leick, S.; Hiersemann, M. J. Org. Chem. 2009, 74, 1531–1540.

(15) Rehbein, J.; Hiersemann, M. J. Org. Chem. 2009, 74, 4336–4342.
(16) Funk has reported the uncatalyzed {1,6}-transannular Ireland– Claisen rearrangement of an 11-membered lactone containing an *E*-configured double bond. In the event, the 7-membered rearrangement product was isolated as a mixture of diastereomers (*trans/cis* = 59:41); see: Abelman, M. M.; Funk, R. L.; Munger, J. D. J. Am. Chem. Soc. 1982, 104, 4030–4032.

(17) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2011, 111, PR284-PR437.

(18) The intriguing reversal in enantioface differentiation by going from **6a** ($\mathbf{R} = \mathbf{Ph}$) to **6c** ($\mathbf{R} = \mathbf{Bn}$) or **6d** ($\mathbf{R} = tert$ -Bu) is documented in the literature; see: (a) Johanssen, M.; Jørgensen, K. A. J. Org. Chem. **1995**, 60, 5757–5762 (HDA reaction). (b) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Downey, C. W.; Tedrow, J. S. J. Am. Chem. Soc. **2000**, 122, 9134–9142 (Mukaiyama–Michael reaction), and ref 1m (Gosteli–Claisen rearrangement).

underwent the enantioselective $\{1,6\}$ -TCAGC to afford the 10-membered **5c** without any noticeable diastereoselectivity (dr = 51:49, > 98% ee) (entries 9 and 10).

Table 2. {1,6}-**T**CAGC of (E,E)-**1a**: Variation of Catalyst Structure^{*a*}

R		_2⊕ ∕2 SbF ₆ R	6a : R = Ph, L = H_2O 6b : R = Ph, L = PhOH 6c : R = Bn, L = PhOH 6d : R = <i>t</i> -Bu, L = H_2O 6e : R = <i>t</i> -Bu, L = CF_3CH_2OH 6f : R = <i>t</i> -Bu, L = PhOH			
(E,E)-1a,b,c <u>(0</u>	catalyst .15 equiv)	(1 <i>R</i> ,2S) trans- 5a ,t	- + p,c +	(1 <i>R</i> ,2 <i>R</i>)- cis- 5a ,b,c	-
ntry s	substrate	catalyst	time (h)	yield $(\%)^b$	$\mathrm{d}\mathbf{r}^{c}$	ее (%
1 ((E,E)-1b	(R.R)- 6a	5	97^e	92:8	13

entry	substrate	catalyst	(h)	(%)°	dr	(%)"
1	(<i>E</i> , <i>E</i>)-1b	(R,R)- 6a	5	97^e	92:8	13
2	(<i>E</i> , <i>E</i>)-1b	(R,R)- 6b	1.5	92	92:8	13
3	(<i>E</i> , <i>E</i>)-1b	(R,R)-6c	1.5	70	87:13	70^{f}
4	(<i>E</i> , <i>E</i>)-1b	(S,S)-6d	72	90^g	83:17	>98
5	(<i>E</i> , <i>E</i>)-1b	(S,S)-6 e	18	87	83:17	>98
6	(<i>E</i> , <i>E</i>)-1b	(S,S)-6f	18	87	83:17	>98
7^h	(<i>E</i> , <i>E</i>)-1b	(S,S)-6f	26	86	83:17	>98
8^i	(<i>E</i> , <i>E</i>)-1a	(S,S)-6f	2	98	62:38	>97
9	(<i>E</i> , <i>E</i>)-1c	(S,S)-6f	18	95	51:49	>98
10^{j}	(<i>E</i> , <i>E</i>)-1c	(S,S)-6f	48	86	51:49	>98

^{*a*} Experiments conducted with 0.08 mmol (E,E)-**1a**-**c** in 1,2-dichloroethane at ambient temperature. Catalysts prepared as described in the Supporting Information. ^{*b*} Isolated yield after purification by chromatography. ^{*c*} trans-**5**/cis-**5**, ratio determined by NMR. ^{*d*} ee for the major diastereomer determined by chiral HPLC. The absolute configuration was assigned based on the accepted TS model for the CAGC. ^{*e*} 39% yield after 1.5 h with 56% of (E,E)-**1b** recovered. ^{*f*} In favor of the (1S,2R)*trans*-**5b** diastereomer. ^{*s*} 66% yield after 18 h with 33% of (E,E)-**1b** recovered. ^{*h*} 0.05 equiv of (S,S)-**6f**. ^{*i*} Identical outcome using 0.025 equiv of (S,S)-**6f** after 18 h. ^{*j*} 0.05 equiv of (S,S)-**6f**.

We next studied the influence of the double bond configuration on the chemo- and diastereoselectivity of the {1,6}-TCAGC (Table 3). In general, the difference between the 13-membered (E,E)-1b and its double bond isomers was substantial; in particular, varying reactivities, diastereoselectivities, and the formation of the inseparable byproduct 7 were observed. In detail, attempts to catalyze the $\{1,6\}$ -TCAGC of (Z,E)-1b using (S,S)-6d (R = t-Bu, $L = H_2O$ led to a miniscule conversion, even after 3 days, and the formation of a 1:1 mixture of diastereomers (entry 1). A faster conversion to a nearly 1:1:1 mixture of diastereomers and 7 was observed using (S,S)-6e (R = t-Bu, L = CF_3CH_2OH) or (S,S)-6f (R = t-Bu, L = PhOH) (entries 2 and 3). Somewhat surprinsingly in light of the results from the $\{1,6\}$ -TGC (Table 1, entry 7), using 15 or even 30 mol % of (S,S)-6f, (E,Z)-1b was reluctant to undergo the $\{1,6\}$ -TCAGC and only small amounts of a roughly 1:1 mixture of cis- and trans-5b contaminated with traces of 7 were obtained (entry 4). In contrast, attempts to realize the $\{1,6\}$ -TCAGC of (Z,Z)-1b led to the expected low conversion via a boat-like TS structure to afford *cis*-5b and the formation of 7 via the nonconcerted pathway (entry 5).

Table 3. $\{1,6\}$ -TCAGC of **1b**: Variation of Double Bond Configuration and Catalyst Structure^{*a*}

entry	substrate	catalyst	time (h)	yield $(\%)^b$	ratio ^c
1	(Z,E)-1b	(S,S)-6d	72	8^d	32:35:33
2	(\mathbf{Z}, E) -1b	(S,S)-6e	18	69	34:36:30
3	(Z,E)-1b	(S,S)-6f	18	65	33:36:31
4	(E,Z)-1b	(S,S)-6f	18	7^e	52:39:9
5	(\mathbb{Z},\mathbb{Z}) -1b	(S,S)-6f	18	12^{f}	0:57:43

^{*a*} Experiments conducted with 0.08 mmol of **1b** in 1,2-dichloroethane at ambient temperature. Catalyst prepared as described in the Supporting Information. Formation of product mixtures prevented ee determination. ^{*b*} Isolated yield after purification by chromatography. ^{*c*} *trans*-**5b**/*cis*-**5b**/7, product ratio determined by NMR. ^{*d*} With 70% of (*Z*,*E*)-**1b** recovered. ^{*e*} With 70% of (*E*,*Z*)-**1b** recovered. 0.3 equiv of (*S*,*S*)-**6f**: 10% yield with 71% of (*E*,*Z*)-**1b** recovered. ^{*f*} With 76% of (*Z*,*Z*)-**1b** recovered.

Intrigued by the notable difference in reactivity of the 13membered (E,Z)-1b in the uncatalyzed or catalyzed $\{1,6\}$ -TGC (Table 1, entry 7 vs Table 3, entry 4), we studied the $\{1,6\}$ -TCAGC of the 18-membered (*E*,*Z*)-1d to compare ring size effects on reactivity and selectivity (Table 4). In general, our experiments demonstrate the propensity of (E,Z)-1d to undergo the {1,6}-TCAGC via a chairlike TS structure to afford cis-5d in excellent yield and diastereoselectivity. In detail, when using (R,R)-6b (R = Ph, L =PhOH) cis-5d was obtained in excellent yield (99%) and diastereoselectivity (dr = 95.5) but only modest enantioselectivity (44% ee) (entry 1). Switching to (S,S)-6d (R = t-Bu, $L = H_2O$) had the expected beneficial effect on the enantioselectivity (>98% ee) without affecting yield or diastereoselectivity (entry 2). With the same level of selectivity, an improved rate of conversion was again obtained with (S,S)-6e (R = t-Bu, $L = CF_3CH_2OH)$ and (S,S)-6f (R = t-Bu, L = PhOH) (entries 3 and 4); notably, while maintaining the outcome, (S,S)-6f loading could be optimized to 2.5 mol % (entry 5). Finally, we studied the $\{1,6\}$ -TCAGC of (Z,Z)-1d using our standard protocol with $15 \mod \% (S,S)$ -6f (entry 6). In the event, and in expected contrast to the result of the $\{1,6\}$ -TCAGC of the 13-membered (Z,Z)-1b (Table 3, entry 5), we observed the high-yielding (99%) formation of trans-5d in moderate diastereoselectivity (dr = 86:14).

In summary, we have revealed the first uncatalyzed and $[Cu(R-box)L_2](SbF_6)_2$ -catalyzed {1,6}-transannular Gosteli– Claisen rearrangement. This includes the development of a **Table 4.** $\{1,6\}$ -TCAGC: Variation of Ring Size and CatalystStructure^a

entry	catalyst	substrate	time (h)	yield ^b (%)	$\mathrm{d}\mathbf{r}^c$	ee^d (%)
1	(R,R)- 6b	(<i>E</i> , <i>Z</i>)-1d	0.5	99	5:95	44
2	(S,S)-6d	(<i>E</i> , <i>Z</i>)-1d	18	99^e	5:95	>98
3	(S,S)-6e	(<i>E</i> , <i>Z</i>)-1d	4	99	5:95	>98
4	(S,S)-6f	(<i>E</i> , <i>Z</i>)-1d	4	99	5:95	>98
5^{f}	(S,S)-6f	(<i>E</i> , <i>Z</i>)-1d	18	99	5:95	>98
6	(S,S)-6f	(Z,Z)-1d	7.5^{g}	99	$86:14^{h}$	i

^{*a*} Experiments conducted with 0.06 mmol of **1d** in 1,2-dichloroethane at ambient temperature. Catalysts prepared as described in the Supporting Information. ^{*b*} Isolated yield after purification by chromatography. ^{*c*} trans-**5d**/cis-**5d**, ratio determined by NMR. ^{*d*} Determined by chiral HPLC. ^{*e*} 77% yield after 4 h with 22% of (*E*,*Z*)-**1d** recovered. ^{*f*} 0.025 equiv of (*S*,*S*)-**6f**. ^{*g*} 94% yield after 4 h with 6% of (*Z*,*Z*)-**1d** recovered. ^{*h*} (1*S*,2*R*)-trans-**5d**/(1*S*,2*S*)-cis-**5d**. ^{*i*} Inconclusive ee determination.

robust and scalable synthesis of cyclic 2-alkoxycarbonylsubstituted allyl vinyl ethers. Catalyst structure (**R**, **L**) and the ring size as well as double bond configuration of the cyclic allyl vinyl ether substrates are determinants for the efficiency of the {1,6}-TGC. Considering their prevalence in asymmetric catalysis, our finding of a notable modulation of the activity of the [Cu(R-box)L₂](SbF₆)₂ catalyst system by variation of L (H₂O < CF₃CH₂OH or PhOH) could be of general utility. We expect that the disclosed {1,6}-TGC (92%, dr = 94:6) or {1,6}-TCAGC (87%, dr = 83:17, >98% ee) of (*E*,*E*)-**1b** will guide our way to (+)-xeniolide F. Enforcing the chair/boat TS hierarchy in catalyzed transannular Claisen rearrangement serves as an ample challenge in future catalyst development.¹

Acknowledgment. Financial support by the Technische Universität Dortmund and generous donations of Rh_2 - $(O_2C(CH_2)_6CH_3)_4$ by Umicore as well as L-*tert*-leucin by Evonik Degussa GmbH is gratefully acknowledged.

Supporting Information Available. Text, tables, and figures giving experimental procedures, spectral and analytical data, and ¹H and ¹³C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.